Python

数据采集实践作业1

作业一 (1)实验内容 要求:用requests和BeautifulSoup库方法定向爬取给定网址(http://www.shanghairanking.cn/rankings/bcur/2020 )的数据,屏幕打印爬取的大学排名信息。 代码如下: 结果如下: (2)心得体会 在编写这段爬虫代码的过程中,我获得了一些重要的心得体会: 网页解析的重要性: 使用 BeautifulSoup 进

例2.11_1首先生成包含1000个随机字符的字符串,然后统计每个字符的出现次数,注意get()方法的使用

import stringimport randomx=string.ascii_letters+string.digitsy=".join([random.choice(x)for i in range(1000)])" #choice()用于从多个元素中随机选择一个d= dict()for ch in y:    d[ch] = d.get(ch,0) + 1for k,v

例2.12分别编写求n!和斐波那契数列的函数,并调用两个函数进行测试

#定义阶乘函数 def factorial(n):     r = 1     while n > 1:         r *= n         n -= 1     return r def fib(n):     a,b =

例2.13数据分组

def bifurcate_by(L,fn): return [[x for x in L if fn(x)], [x for x in L if not fn(x)]] s = bifurcate_by(['beep','boop','foo','bar'],lambda x: x[0] == 'b') print(s) print("学号:3008")

zsh-autosuggestions for oh-my-zsh

Pass test in MacOS/Ubuntu22/CentOS7:

例2.14用匿名函数,求3个数的乘积及列表元素的值

f = lambda x,y,z:x * y * z L = lambda x :[x**2,x**3,x**4] print(f(3,4,5));print(L(2)) print("学号:3008") 结果如下图

例2.15加载模块示例

import math import random import numpy.random as nr a = math.gcd(12,21) b = random.randint(0,2) c = nr.randint(0,2,(4,3)) print(a);print(b);print(c) print("学号:3008") 结果如下图

例2.16导入模块示例

from random import sample from numpy.random import randint a = sample(range(10),5) b = randint(0,10,5) print(a);print(b) print("学号:3008") 结果如下图

例2.17 导入模块示例

from math import * a = sin(3) b = pi c = e d = radians(180) print(a);print(b);print(c);print(d) print("学号:3008") 结果如下图

10.15测试基础知识

一、测试思维的练习 面试题: (1)你说下淘宝购物车的测试点? (2)给你二维码你会怎么去测试? (3)微信发朋友圈如何测试? (4)微信点赞如何测试? (5)给你一个水杯你会如何去测试? (6) 你说下电梯的测试点? 需求文档,功能,性能,兼容性,安全性,易用性 从不同的角度去考虑如何测试? (1) 需求测试 需求:需求文档,制作的需求书(全称:软件需求规格说明书,简称:srs) 需求:根据客

例2.20 enumerate( )函数使用示例

x1 = "abcde" x2 = list(enumerate(x1)) for ind,ch in enumerate(x1):print(ch) print("学号:3008") 结果如下图

《DNK210使用指南 -CanMV版 V1.0》第三十章 照片拍摄实验

第三十章 照片拍摄实验 1)实验平台:正点原子DNK210开发板 2)章节摘自【正点原子】DNK210使用指南 - CanMV版 V1.0 3)购买链接:https://detail.tmall.com/item.htm?&id=782801398750 4)全套实验源码+手册+视频下载地址:http://www.openedv.com/docs/boards/k210/ATK-DNK21

例2.19 orted()使用示例

import numpy.random as nr x1 = list(range(9,21)) nr.shuffle(x1) x2 = sorted(x1) x3 = sorted(x1,reverse = True) x4 = sorted(x1,key = lambda item : len(str(item))) print(x1);print(x2);print(x3);print(

例2.21 map( )函数使用示例

import random x = random.randint(1e5,1e8) y = list(map(int,str(x))) z = list(map(lambda x,y:x%2 == 1and y % 2 == 0,[1,3,2,4,1],[3,2,1,2])) print(x);print(y);print(z) print("学号:3008") 结果如下图

例2.22 filter( )函数使用示例

a = filter(lambda x:x > 10,[1,111,2,45,7,6,13]) b = filter(lambda x:x.isalnum(),['abc','xy12','***']) #isalnum()是测试是否为字母或数字的方法 print(list(a));print(list(b))   print("学号:3008") a = filter(lambd

例2.23过滤重复值

def filter_non_unique(L): return [item for item in L if L.count(item) == 1] a = filter_non_unique([1,2,2,3,4,4,5]) print(a) print("学号:3008") 结果如下图所示

例2.24 zip()函数使用示例

s1 = [str(x) + str(y) for x,y in zip(['v'] * 4,range(1,5))] s2 = list(zip('abcd',range(4))) print(s1);print(s2) print("3008") 结果如下图所示

例2.26数组生成示例2

import numpy as np a = np.ones(4,dtype = int) b = np.ones((4,),dtype = int) c = np.ones((4,1)) d = np.zeros(4) e = np.empty(3) f = np.eye(3) g = np.eye(3,k = 1) h = np.zeros_like(a) print(a);print(b

例2.27 数组元素的索引示例

import numpy as np a = np.arange(16).reshape(4,4) b = a[1][2] c = a[1,2] d = a[1:2,2:3] x = np.array([0,1,2,1]) print(a[x == 1]) print('学号:3008') 结果如下图所示

例2.28矩阵合并示例

import numpy as np a = np.arange(16).reshape(4,4) b = np.floor(5 * np.random.random((2,4))) c = np.ceil(6 * np.random.random((4,2))) d = np.vstack([a,b]) e = np.hstack([a,c]) print(a);print(b);print(

例2.29矩阵分隔示例

import numpy as np a = np.arange(16).reshape(4,4) b = np.vsplit(a,2) print('行分割:n',b[0],'n',b[1]) c = np.hsplit(a,4) print('列分隔:n',c[0],'n',c[1],'n',c[2],'n',c[3]) print("学号:3008") 结果如下图:

例2.30矩阵元素求和示例

import numpy as np a = np.array([[0,3,4],[1,6,4]]) b = a.sum() c1 = sum(a) c2 = np.sum(a,axis = 0) c3 = np.sum(a,axis = 0,keepdims = True) print(c2.shape,c3.shape) print('学号:3008') 结果如下图

例2.31 逐个元素运算示例

import numpy as np a = np.array([[0,3,4],[1,6,4]]) b = np.array([[1,2,3],[2,1,4]]) c = a / b d = np.array([2,3,2]) e = a * d f = np.array([[3],[2]]) g = a * f h = a ** (1/2) print(a);print(b);print(c

例2.32矩阵乘法示例

import numpy as np a = np.ones(4) b = np.arange(2,10,2) c = a @ b d = np.arange(16).reshape(4,4) f = a @ d g = d @ a print(a);print(b);print(c) print(d);print(f);print(g) print("学号:3008") 结果如下图

例2.33 求下列居正的各个行向量的2范数,各个列向量的2范数和矩阵2范数

import numpy as np a = np.array([[0,3,4],[1,6,4]]) b = np.linalg.norm(a,axis = 1) c = np.linalg.norm(a,axis = 0) d = np.linalg.norm(a) print("行向量2范数为:",np.round(b,4)) print("列向量2范数为:",np.round(c,4)) p

例2.34 求解线性方程组

import numpy as np a = np.array([[3,1],[1,2]]) b = np.array([9,8]) x1 = np.linalg.inv(a) @ b x2 = np.linalg.solve(a,b) print(x1);print(x2) print("学号:3008") 结果如下

例2.35 求线性方程组

import numpy as np a = np.array([[3,1],[1,2],[1,1]]) b = np.array([9,8,6]) x = np.linalg.pinv(a) @ b print(np.round(x,4)) print("学号:3008") 结果如下

例2.36 求下列矩阵的特征值以及特征向量

import numpy as np a = np.eye(4) b = np.rot90(a) c,d = np.linalg.eig(b) print("特征值:",c) print("特征向量:n",d) print("学号:3008") 结果如下

例2.37生成服从标准正态分布的24 4 随机数矩阵呢个,并保存为DataFrame 数据结构

import pandas as pd import numpy as np datas = pd.date_range(start='20191101',end='20191124',freq = 'D') a1 = pd.DataFrame(np.random.randn(24,4),index = datas , columns = list('ABCD')) a2 = pd.DataFr

例2.38数据写入文件示例

import pandas as pd import numpy as np datas = pd.date_range(start='20191101',end='20191124',freq='D') a1 = pd.DataFrame(np.random.randn(24,4),index = datas,columns=list('ABCD')) a2 = pd.DataFrame(np.

<<  <  37  38  39  40  41  42  43  44  45  46  47  >  >>