【机器学习(八)】分类和回归任务-因子分解机(Factorization Machines,FM)-Sentosa_DSML社区版

KennethYuen / 2024-10-17 / 原文

@

目录
  • 一、算法概念
  • 二、算法原理
    • (一) FM表达式
    • (二)时间复杂度
    • (三)回归和分类
  • 三、算法优缺点
    • (一)优点
    • (二)缺点
  • 四、FM分类任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 五、FM回归任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 六、总结

一、算法概念

  因子分解机(Factorization Machines, FM)是一种基于矩阵分解的机器学习算法,主要解决高维稀疏数据下的特征交互和参数估计问题。FM 通过引入特征组合和隐向量的矩阵分解来提升模型表现,特别适合处理推荐系统等场景中的数据稀疏性和特征交互复杂性。

  FM 可以用于分类和回归任务,是线性模型的扩展,能够高效地捕捉特征之间的交互作用。FM 的核心是通过低维向量的内积表示特征交互,使得其参数数量随维度线性增长,从而降低计算复杂度。
在这里插入图片描述
  FM 的主要特点:
  $\bullet$有监督学习模型,适用于回归和分类任务。
  $\bullet$通过低维向量的内积表示特征交互,模型结构保持线性。
  $\bullet$常用训练方法:随机梯度下降(SGD)、交替最小二乘法(ALS)和马尔可夫链蒙特卡洛(MCMC)。
  FM 模型通过矩阵分解对特征交互建模,并且在处理稀疏数据时有显著优势,常用于推荐系统。

二、算法原理

(一) FM表达式

  为了使系统能够进行预测,它依赖于由用户事件记录生成的可用数据。这些数据是表示兴趣和意图的交易记录,例如:下载、购买、评分。
  对于一个电影评论系统来说,交易数据记录了用户 $u \in U$ 在某一时间 $t \in R$ 对电影(物品) $i \in I$ 给出的评分 $r \in{1, 2, 3, 4, 5 }$ ,由此产生的数据集可以表示如下:
在这里插入图片描述
  用于预测的数据表示为一个矩阵 $X \in\mathbb{R}^{m \times n}$ ,其中包含总共 $m$ 个观测值,每个观测值由一个实值特征向量 $x \in\mathbb{R}^{n}$ 组成。来自上述数据集的特征向量可以表示为:
在这里插入图片描述
  其中, $n=| U |+| I |+| T |$ ,即 $x \in\mathbb{R}^{n}$ 也可以表示为 $x \in\mathbb{R}^{| U |+| I |+| T |}$ ,其中训练数据集的表达式为 $D={( x^{( 1 )}, y^{( 1 )} ), ( x^{( 2 )}, y^{( 2 )} ), \ldots, ( x^{( m )}, y^{( m )} ) }$ 。训练目标是估计一个函数 $\hat{y} ( x ) : \mathbb{R}^{n} \to\mathbb{R}$ ,当提供第 $i$ 行 $x_{i} \in\mathbb{R}^{n}$ 作为输入时,能够正确预测对应的目标值 $y_{i} \in\mathbb{R}$ 。
  FM模型的计算表达式如下所示:
在这里插入图片描述
   $< {\mathbf{v}}{i}, {\mathbf{v}} >$ 是交叉特征的参数,可以由一组参数定义:
$$
< {\mathbf{v}}{i}, {\mathbf{v}} >=\hat{w}{i, j}=\sum^{k} v_{i, f} \times v_{j, f}
$$
  当 $k$ 足够大时,对于任意对称正定的实矩阵 $\widehat{W} \in\mathbb{R}^{n \times n}$ ,均存在实矩阵 $V , \in, \mathbb{R}^{n \times k}$ ,使得$\widehat{W}=V V^{\top}$成立:
$$\hat{\mathbf{W}} =
\begin{bmatrix}
\hat{w}{1,1} & \hat{w} & \cdots & \hat{w}{1,n} \
\hat{w}
& \hat{w}{2,2} & \cdots & \hat{w} \
\vdots & \vdots & \ddots & \vdots \
\hat{w}{n,1} & \hat{w} & \cdots & \hat{w}_{n,n}
\end{bmatrix}
= \mathbf{V}^{T} \mathbf{V} =
\begin{bmatrix}
{\mathbf{v}}_1^{T} \
{\mathbf{v}}2^{T} \
\vdots \
{\mathbf{v}}n^{T}
\end{bmatrix}
\begin{bmatrix}
{\mathbf{v}}1 &{\mathbf{v}}2 & \cdots & {\mathbf{v}}n
\end{bmatrix}$$
  其中,模型待求解的参数为:
$$
w
\in\mathbb{R}, \quad\mathbf{w} \in\mathbb{R}^{n}, \quad\mathbf{V} \in\mathbb{R}^{n \times k}
$$
  其中:
  $\bullet$ $w
$ 表示全局偏差。
  $\bullet$ $w
$ 用于捕捉第 $i$ 个特征和目标之间的关系。
  $\bullet$ $\hat{w}
$ 用于捕捉 $( i, j )$ 二路交叉特征和目标之间的关系。
  $\bullet$ ${\mathbf{v}}
$ 代表特征 $i$ 的表示向量,它是 $\mathbf{V}$ 的第 $i$ 列。

(二)时间复杂度

  根据FM模型计算表达式,可以得到模型的计算复杂度如下:
$$
{n+( n-1 ) }+\left{\frac{n ( n-1 )} {2} [ k+( k-1 )+2 ]+\frac{n ( n-1 )} {2}-1 \right}+2={ O} ( k n^{2} ),
$$
  通过对交叉项的分解和计算,可以降低时间复杂度为${ O} ( k n )$,计算过程如下所示:
在这里插入图片描述
  对于交叉特征,它们的交叉矩阵是一个对称矩阵,这里通过对一个 3x3 对称矩阵的详细分析,展示如何通过减少自交互项和利用对称性来优化计算。最终的结果是简化方程,并且将计算复杂度从二次方降低为线性级别,使模型能够更加高效地处理稀疏数据场景。
  首先,使用一个 3x3 的对称矩阵,图中表达式为计算目标:在这里插入图片描述
  对目标表达式进行展开,展开后对内积进行计算,左式表示 3x3 对称矩阵的一半(对称矩阵的上三角部分)
在这里插入图片描述
  右式表示需要从左式中减去的部分,右式为对称矩阵中自交互的部分,即对角线部分的计算。
在这里插入图片描述
  最终推导,得到:
$$\hat{y} ( {\bf x} )=w_{0}+\sum_{i=1}^{n} w_{i} \times x_{i}+\frac{1} {2} \sum_{f=1}^{k} \left( \left( \sum_{i=1}^{n} v_{i, f} \times x_{i} \right){2}-\sum_{i=1} v_{i, f}^{2} \times x_{i}^{2} \right) $$
  其计算复杂度为${ O} ( k n )$:$$k {[ n+( n-1 )+1 ]+[ 3 n+( n-1 ) ]+1 }+( k-1 )+1={\cal O} ( k n )$$

(三)回归和分类

  FM 模型可以用于求解分类问题,也可以用于求解回归问题。在回归任务中,FM 的输出$\hat{y} ( {\bf x} )$可以直接作为连续型预测变量。目标是优化回归损失函数,
  最小二乘误差(MSE):最小化预测值与实际值之间的均方误差。损失函数表达式如下所示:
$$
l(\hat{y}(x), y) = (\hat{y}(x) - y)^2
$$
  对于二分类问题,使用的是Logit或Hinge损失函数:
$$l(\hat{y}(x), y) = -\ln \sigma(\hat{y}(x) y)$$
  其中,σ 是Sigmoid(逻辑函数),𝑦∈{−1,1}。在二分类任务中,模型输出的是类别的概率,Sigmoid函数将其转换为0到1之间的概率值,而损失函数则度量预测值与真实分类之间的偏差。FMs 容易出现过拟合问题,因此应用 L2 正则化来防止过拟合。正则化有助于减少模型的复杂性,防止模型在训练数据上过度拟合,从而提升模型在新数据上的泛化能力。
  模型训练好后,就可以利用 $\widehat{y} ( \mathbf{x} )$ 的正负符号来预测 $\mathbf{x}$ 的分类了。

  最后,FM 模型方程的梯度可以表示如下:
$$\frac{\partial}{\partial \theta} \hat{y}(x) =
\begin{cases}
1, & \text{如果} , \theta , \text{是} , w_0 \
x_i, & \text{如果} , \theta , \text{是} , w_i \
x_i \sum_{j=1}^{n} v_j^f x_j - v_i^f x_i^2, & \text{如果} , \theta , \text{是} , v_{i,f}
\end{cases}$$
  其中,
  $\bullet$ 当参数是 $w_{0}$ 时,梯度为常数1。
  $\bullet$ 当参数是 $w_{i}$ 时,梯度为 $x_{i}$ ,即特征 $i$ 的值。
  $\bullet$ 当参数是 $v_{i, f}$ 时,梯度更复杂,包含一个交互项 $x_{i} \sum_{j=1}^{n} v_{j}^{f} x_{j}$ 减去一个二次项 $v_{i}^{f} x_{i}^{2}$ 。这里
$v_{j}^{f}$ 是对应特征 $j$ 的因子向量的第 $f$ 个元素。
  求和项 $\sum_{j=1}^{n} v_{j}^{f} x_{j}$ 与 $i$ 无关,因此可以提前计算。这样,每个梯度都可以在常数时间 $O ( 1 )$ 内计算出来,而所有参数的更新可以在 $O(kn)$ 或稀疏条件下的 $O(kN_z(x))$内完成,其中$k$是因子维度,$n$是特征数量,$N_z(x)$是非零特征的数量。

三、算法优缺点

(一)优点

  1、解决了特征稀疏的问题,能够在非常系数数据的情况下进行预估
  2、解决了特征组合的问题
  3、FM是一个通用模型,适用于大部分场景
  4、线性复杂度,训练速度快

(二)缺点

  虽然考虑了特征的交互,但是表达能力仍然有限,不及深度模型;通过矩阵结构来建模特征之间的二阶交互交互作用,假设所有特征的权重都可以通过隐式支持来串联,但实际上某些特征交互可能比其他特征交互更重要,这种统一的串联有时无法捕捉复杂的交互关系。

四、FM分类任务实现对比

  使用 PySpark 的 FMClassifier 进行分类任务

(一)数据加载和样本分区

1、Python代码

# 创建 Spark 会话
spark = SparkSession.builder \
    .appName("FMClassifierExample") \
    .getOrCreate()

# 加载 Iris 数据集
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target

# 将数据转换为 DataFrame
df = pd.DataFrame(X, columns=iris.feature_names)
df['label'] = y

# 将 pandas DataFrame 转换为 Spark DataFrame
spark_df = spark.createDataFrame(df)

# 将特征列组合成一个单独的特征列
assembler = VectorAssembler(inputCols=iris.feature_names, outputCol="features")
spark_df = assembler.transform(spark_df).select(col("label"), col("features"))

# 划分训练集和测试集
train_df, test_df = spark_df.randomSplit([0.8, 0.2], seed=42)

2、Sentosa_DSML社区版

  首先通过数据读入算子读取数据,中间可以接任意个数据处理算子(例,行处理,列处理等),
在这里插入图片描述
  然后,连接行处理中的样本分区算子对数据进行训练集和测试集的划分,比例为8:2,
在这里插入图片描述
  再接类型算子,设置Feature列和Label列。
在这里插入图片描述

(二)模型训练

1、Python代码

from pyspark.sql import SparkSession
from pyspark.ml.classification import FMClassifier

# 创建 FMClassifier 模型
fm = FMClassifier(
    featuresCol="features",
    labelCol="label",
    predictionCol="prediction",
    probabilityCol="probability",
    rawPredictionCol="rawPrediction",
    factorSize=8,
    fitIntercept=True,
    fitLinear=True,
    regParam=0.01,
    miniBatchFraction=1.0,
    initStd=0.01,
    maxIter=100,
    stepSize=0.01,
    tol=1e-06,
    solver="adamW",
    thresholds=[0.5],  # 设置分类阈值
    seed=42
)

# 训练模型
fm_model = fm.fit(train_df)

# 进行预测
predictions = fm_model.transform(test_df)

# 显示预测结果
predictions.select("features", "label", "prediction", "probability").show()

2、Sentosa_DSML社区版

  连接因子分解机分类算子,右侧设置模型参数等信息,点击应用后,右击算子并执行,得到因子分解机分类模型。如下图所示,
在这里插入图片描述
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns

# 从 PySpark DataFrame 提取预测结果
predictions_df = predictions.select("label", "prediction").toPandas()
y_test_sklearn = predictions_df['label'].values
y_pred_sklearn = predictions_df['prediction'].values

# 评估模型
accuracy = accuracy_score(y_test_sklearn, y_pred_sklearn)
precision = precision_score(y_test_sklearn, y_pred_sklearn, average='weighted')
recall = recall_score(y_test_sklearn, y_pred_sklearn, average='weighted')
f1 = f1_score(y_test_sklearn, y_pred_sklearn, average='weighted')

# 打印评估结果
print(f"FM 模型的准确率: {accuracy:.2f}")
print(f"加权精度 (Weighted Precision): {precision:.2f}")
print(f"加权召回率 (Weighted Recall): {recall:.2f}")
print(f"F1 值 (Weighted F1 Score): {f1:.2f}")

# 计算混淆矩阵
cm = confusion_matrix(y_test_sklearn, y_pred_sklearn)

2、Sentosa_DSML社区版

  模型后可接任意个数据处理算子,比如图表分析算子或数据写出算子,形成算子流执行,也可接评估算子,对模型的分类结果进行评估。如下图所示:在这里插入图片描述
  得到训练集和测试集的评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,可以查看模型的模型信息,模型信息如下图所示:
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

五、FM回归任务实现对比

  利用python代码,结合 PySpark 和 pandas 处理数据,主要应用了 Spark 的 FMRegressor 进行回归分析。

(一)数据加载和样本分区

1、Python代码

# 读取 winequality 数据集
df = pd.read_csv("D:/sentosa_ML/Sentosa_DSML/mlServer/TestData/winequality.csv")
df = df.dropna()  # 处理缺失值

# 将 pandas DataFrame 转换为 Spark DataFrame
spark_df = spark.createDataFrame(df)

# 将特征列组合成一个单独的特征列
feature_columns = df.columns.tolist()
feature_columns.remove('quality')
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
spark_df = assembler.transform(spark_df).select("features", "quality")

# 划分训练集和测试集
train_df, test_df = spark_df.randomSplit([0.8, 0.2], seed=42)

2、Sentosa_DSML社区版

  先读取需要数据集,
在这里插入图片描述
  然后连接样本分区算子对数据集进行训练集和测试集的划分,划分比例为8:2,
在这里插入图片描述
  再接类型算子设置Feature列和Label列(Label列需满足:能转换为Double类型或者就是Double类型)
在这里插入图片描述

(二)模型训练

1、Python代码

# 创建 FMRegressor 模型
fm_regressor = FMRegressor(
    featuresCol="features",
    labelCol="quality",
    predictionCol="prediction",
    factorSize=8,
    fitIntercept=True,
    fitLinear=True,
    regParam=0.01,
    miniBatchFraction=1.0,
    initStd=0.01,
    maxIter=100,
    stepSize=0.01,
    tol=1e-06,
    solver="adamW",
    seed=42
)

# 训练模型
fm_model = fm_regressor.fit(train_df)

# 对测试集进行预测
predictions = fm_model.transform(test_df)

2、Sentosa_DSML社区版

  连接因子分解机回归算子,
在这里插入图片描述
  右击算子,点击运行,得到因子分解机回归模型。如下图所示:
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

# 评估模型
evaluator = RegressionEvaluator(
    predictionCol="prediction",
    labelCol="quality",
    metricName="r2"
)
r2 = evaluator.evaluate(predictions)
evaluator_mae = RegressionEvaluator(predictionCol="prediction", labelCol="quality", metricName="mae")
mae = evaluator_mae.evaluate(predictions)
evaluator_mse = RegressionEvaluator(predictionCol="prediction", labelCol="quality", metricName="mse")
mse = evaluator_mse.evaluate(predictions)
rmse = np.sqrt(mse)

# 打印评估结果
print(f"R²: {r2:.4f}")
print(f"MAE: {mae:.4f}")
print(f"MSE: {mse:.4f}")
print(f"RMSE: {rmse:.4f}")

# 将预测值转换为 Pandas DataFrame 以便绘图
predictions_pd = predictions.select("quality", "prediction").toPandas()
y_test = predictions_pd["quality"]
y_pred = predictions_pd["prediction"]

# 绘制实际值与预测值的对比图
plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred, color="blue", alpha=0.6)
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 'r--')
plt.xlabel('Actual Quality')
plt.ylabel('Predicted Quality')
plt.title('Actual vs Predicted Wine Quality')
plt.show()

# 计算残差
residuals = y_test - y_pred

# 使用 Seaborn 绘制带核密度估计的残差直方图
plt.figure(figsize=(8, 6))
sns.histplot(residuals, kde=True, bins=20)
plt.title('Residuals Histogram with KDE')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

2、Sentosa_DSML社区版

  模型后接评估算子,对模型结果进行评估。算子流如下图所示:
在这里插入图片描述
  训练集和测试集的评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,查看模型的模型信息:
在这里插入图片描述
在这里插入图片描述

六、总结

  相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。
  Sentosa_DSML社区版提供了易于配置的算子流,减少了编写和调试代码的时间,并提升了模型开发和部署的效率,由于应用的结构更清晰,维护和更新变得更加容易,且平台通常会提供版本控制和更新功能,使得应用的持续改进更为便捷。

  为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

https://sentosa.znv.com/