利用pytorch的datasets在本地读取MNIST数据集进行分类
MNIST数据集下载地址:tensorflow-tutorial-samples/mnist/data_set at master · geektutu/tensorflow-tutorial-samples · GitHub
数据集存放和dataset的参数设置:
完整的MNIST分类代码:
import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader from torch.nn import Sequential class Simple_CNN(nn.Module): def __init__(self): super(Simple_CNN, self).__init__() self.conv1 = Sequential( nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.conv2 = Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(128), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2) ) self.fc1 = Sequential( nn.Linear(7 * 7 * 128, 1024), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(1024, 256), nn.ReLU(), nn.Dropout(p=0.5), ) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.shape[0], -1) x = self.fc1(x) x = self.fc2(x) return x def train(model, device, train_loader, test_loader, optimizer, criterion, epochs): # model.train() for epoch in range(epochs): model.train() for data, target in train_loader: data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() print(f'Epoch {epoch+1}, Loss: {loss.item()}') test(model, device, test_loader) def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print(f'Test set: Average loss: {test_loss:.4f}, \ Accuracy: {correct}/{len(test_loader.dataset)} ({100. * correct / len(test_loader.dataset):.0f}%)') if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) train_dataset = datasets.MNIST(root='dataset/mnist/', train=True, download=True, transform=transform) test_dataset = datasets.MNIST(root='dataset/mnist/', train=False, download=True, transform=transform) train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False) model = Simple_CNN() model = model.to(device) optimizer = optim.Adam(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() epochs = 5 train(model, device, train_loader, test_loader, optimizer, criterion, epochs) # test(model, device, test_loader) torch.save(model, 'model.pth') print('done')
实验结果: