Pytorch神经网络构建与训练测试全流程入门

倦鸟已归时 / 2023-07-29 / 原文

最基本的简单神经网络有三种构建方式:

1. 手动构建一个类

2. 用 torch.nn.Sequential()

3. 用 torch.nn.Sequential( OrderedDict )

from torch import nn

# 第1种构建方法,最灵活
class Network(nn.Module):
    def __init__(self):
        super().__init__()
        
        # Inputs to hidden layer linear transformation
        self.hidden = nn.Linear(784, 256)
        # Output layer, 10 units - one for each digit
        self.output = nn.Linear(256, 10)
        
        # Define sigmoid activation and softmax output
        self.sigmoid = nn.Sigmoid()
        self.softmax = nn.Softmax(dim=1)
        
    def forward(self, x):
        # Pass the input tensor through each of our operations
        x = self.hidden(x)
        x = self.sigmoid(x)
        x = self.output(x)
        x = self.softmax(x)
        
        return x
nn1 = Network()
nn1
'''结果:
Network(
  (hidden): Linear(in_features=784, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
  (sigmoid): Sigmoid()
  (softmax): Softmax(dim=1)
)
'''
# 第2种构建方法,Sequential类 input_size = 784 hidden_size = [128, 64] output_size = 10 nn2 = nn.Sequential( nn.Linear(input_size, hidden_size[0]), nn.ReLU(), nn.Linear(hidden_size[0], hidden_size[1]), nn.ReLU(), nn.Linear(hidden_size[1], output_size), nn.Softmax(dim=1) ) nn2 '''结果:
Sequential( (0): Linear(in_features=784, out_features=128, bias=True) (1): ReLU() (2): Linear(in_features=128, out_features=64, bias=True) (3): ReLU() (4): Linear(in_features=64, out_features=10, bias=True) (5): Softmax(dim=1) )
'''

# 第3种构建方法,同样是Sequential类,但是传入字典类型,更加易用 from collections import OrderedDict nn3 = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(input_size, hidden_size[0])), ('relu1', nn.ReLU()), ('fc2', nn.Linear(hidden_size[0], hidden_size[1])), ('relu2', nn.ReLU()), ('output', nn.Linear(hidden_size[1], output_size)), ('softmax', nn.Softmax(dim=1)) ])) nn3

'''结果:
Sequential(
  (fc1): Linear(in_features=784, out_features=128, bias=True)
  (relu1): ReLU()
  (fc2): Linear(in_features=128, out_features=64, bias=True)
  (relu2): ReLU()
  (output): Linear(in_features=64, out_features=10, bias=True)
  (softmax): Softmax(dim=1)
)
'''

然后查看模型结构的方法分别如下:

nn1 = Network()
nn1
print(nn1.hidden)
print(nn2[2])
print(nn3[4])
print(nn3.output)
'''
Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=128, out_features=64, bias=True)
Linear(in_features=64, out_features=10, bias=True)
Linear(in_features=64, out_features=10, bias=True)
'''

模型训练与测试的全流程。

案例1:最简单的学习模型——线性回归。

## linear regression simply implement
# https://blog.csdn.net/qq_27492735/article/details/89707150
import torch
from torch import nn, optim
from torch.autograd import Variable

# 读取训练数据,这里不读取了,直接定义一个最简单的数据x及其标签y
x = Variable(torch.Tensor([[1, 2], [3, 4], [4, 2]]), requires_grad=False)
y = Variable(torch.Tensor([[3], [7], [6]]), requires_grad=False)
# model constract
def model():
    # 模型
    net = nn.Sequential(
        nn.Linear(2, 4),
        nn.ReLU6(),
        nn.Linear(4, 3),
        nn.ReLU(),
        nn.Linear(3, 1)
    )
    # 优化器与损失函数
    optimizer = optim.Adam(net.parameters(), lr=0.01)
    loss_fun =nn.MSELoss()
    # 迭代步骤
    for i in range(300):
        # 1 前向传播
        out = net(x)
        # 2 计算损失
        loss = loss_fun(out, y)
        print(loss)
        # 3 梯度清零
        optimizer.zero_grad()
        # 4 反向传播
        loss.backward()
        # 5 更新优化器
        optimizer.step()
    # 计算预测值
    print(net(x))
    # 保存训练好的模型(参数)
    # torch.save(net, 'simplelinreg.npy')
    return net
net = model()

以上模型大概是最简单的了,毕竟没有比线性回归更简单的机器学习模型了。

案例2: RNN循环神经网络的搭建以及训练流程。

我通常把pytorch训练神经网络细分为8个步骤,或者3个部分。

第1部分:声明 1 模型 Model、2 损失函数 Loss function、3 优化器 Optimizer

第2部分:读取数据通常都是采用DataLoader做的,不过简单的任务直接用 numpy 定义就行。比较大规模的任务都用DataLoader进行批量处理。4 前向传播。

第3部分:更新参数,通常是固定的三个操作 5 计算损失函数 6 optimizer.zero_grad() 、7 loss.backward()、8 optimizer.step()。

"""
torch.nn.RNN()
input_size:
hidden_size:
num_layers:
nonlinearity: 指定非线性函数的使用[tanh, relu],默认tanh
bias: True default,
dropout:如果非%gui除了最后一层之外其他层输出都会套上一个drouput层
batch_first: if True, Tensor的shape就是(batch, seq, feature),输出也是
bidirectional: False default
"""
import numpy as np
import matplotlib.pyplot as plt

import torch
from torch import nn
# from torch.autograd import Variable

"""
PyTorch基础入门七:PyTorch搭建循环神经网络(RNN)
https://blog.csdn.net/out_of_memory_error/article/details/81456501

Example:曲线拟合。拟合一个cos函数
"""
class RNNCurveFitting(nn.Module):
    def __init__(self, INPUT_SIZE):
        super(RNNCurveFitting, self).__init__()
        self.rnn = nn.RNN(
            input_size=INPUT_SIZE,
            hidden_size=32,
            num_layers=1,
            batch_first=True
        )
        self.out = nn.Linear(32, 1)
        
    def forward(self, x, h_state):
        r_out, h_state = self.rnn(x, h_state)
        outs = []
        for time in range(r_out.size(1)):
            outs.append(self.out(r_out[:, time, :]))
        return torch.stack(outs, dim=1), h_state

# hyper parameters
TIME_STEP=10
INPUT_SIZE=1
LR = 0.02
# Step1 model
model = RNNCurveFitting(INPUT_SIZE)
# Step2 3 loss function and optimizer
loss_func = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=LR)

h_state = None
for step in range(300):
    start, end = step * np.pi, (step+1)*np.pi
    steps = np.linspace(start, end, TIME_STEP, dtype=np.float32)
    x_np = np.sin(steps)
    y_np = np.cos(steps)
    # Step (4) 如果用的DataLoader则不需要这一步骤, read data, from_numpy: 数组转换成张量,所得tensor和原array共享内存
    x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis])
    y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])
    # x = Variable(torch.from_numpy(x_np[np.newaxis, :, np.newaxis]))
    # y = Variable(torch.from_numpy(y_np[np.newaxis, :, np.newaxis]))
    # Step 4 前向传播
    prediction, h_state = model(x, h_state)
    h_state = h_state.data
    # Step 5 6 7 8
    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

plt.plot(steps, y_np.flatten(), 'r-')
plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
plt.show()

案例3:DataLoader的使用。

首先用 torchvision.datasets.MNIST 数据集为例

import torchvision
import torch
import torchvision.transforms as transforms
import torchvision

train_set = torchvision.datasets.MNIST(root="./mnist_data",train=True,download=True)
test_set = torchvision.datasets.MNIST(root="./mnist_data",train=False,download=True)
 
#pil型对象显示
print(test_set.classes)
print(test_set[0])
for i in range(10):
    img,label=test_set[i]
    print(test_set.classes[label])
img.show()

'''
['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four', '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
(<PIL.Image.Image image mode=L size=28x28 at 0x290E792BE80>, 7)
'''

batch_size = 256
# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_set,
                                           batch_size=batch_size,
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_set,
                                          batch_size=batch_size,
                                          shuffle=False)

end