梯形面积公式

ccr's notebook / 2023-07-16 / 原文

梯形面积公式

1.求OB

易证:△AOB∽△DAE(三垂直)
所以有$$\frac{AB}{DE} =\frac{OB}{AE} $$
又$$AB=z,AE=x,DE=DC-EC=DC-AB=y-z$$
所以$$OB=\frac{xz}{y-z} $$

\[\int_{\frac{xz}{y-z} }^{\frac{xz}{y-z}+x } \frac{y-z}{x} x dx =\frac{y-z}{x} \left [ \frac{\left ( \frac{xz}{y-z}+x \right )^2 }{2}+c-\frac{\left ( \frac{xz}{y-z}+x \right )^2 }{2}-c \right ] = \frac{y-z}{x}\left [ \frac{x^2}{2}+\frac{x^2z}{y-z} \right ] =\frac{xy-xz}{2}+xz =\frac{xy+xz}{2} =\frac{x\left ( y+z \right ) }{2} \]