梯形面积公式
梯形面积公式

1.求OB
易证:△AOB∽△DAE(三垂直)
所以有$$\frac{AB}{DE} =\frac{OB}{AE} $$
又$$AB=z,AE=x,DE=DC-EC=DC-AB=y-z$$
所以$$OB=\frac{xz}{y-z} $$
\[\int_{\frac{xz}{y-z} }^{\frac{xz}{y-z}+x } \frac{y-z}{x} x dx
=\frac{y-z}{x} \left [ \frac{\left ( \frac{xz}{y-z}+x \right )^2 }{2}+c-\frac{\left ( \frac{xz}{y-z}+x \right )^2 }{2}-c \right ]
= \frac{y-z}{x}\left [ \frac{x^2}{2}+\frac{x^2z}{y-z} \right ]
=\frac{xy-xz}{2}+xz
=\frac{xy+xz}{2}
=\frac{x\left ( y+z \right ) }{2}
\]