关于高斯消元求解行列式的证明

yhy-trh / 2023-05-03 / 原文

\[ 已知 det(A) = \left|\begin{matrix} a_{1,1} & a_{1,2} & ... & a_{1,n}\\ a_{2,1} & a_{2,2} & ... & a_{2,n}\\ ... & ... & ... & ... \\ a_{n,1} & a_{n,2} & ... & a_{n,n}\\ \end{matrix} \right| \]

\[ 设det(B) = \left|\begin{matrix} k\times a_{2,1} & k\times a_{2,2} & ... & k\times a_{2,n}\\ 1\times a_{2,1} & 1\times a_{2,2} & ... & 1\times a_{2,n}\\ ... & ... & ... & ... \\ 1\times a_{n,1} & 1\times a_{n,2} & ... & 1\times a_{n,n}\\ \end{matrix} \right| \]

\[ 设det(C)=det(A)+det(B) \]

\[ det(C)= \left|\begin{matrix} a_{1,1}+k\times a_{2,1} & a_{1,2}+k\times a_{2,2} & ... & a_{1,n}+k\times a_{2,n}\\ 1\times a_{2,1} & 1\times a_{2,2} & ... & 1\times a_{2,n}\\ ... & ... & ... & ... \\ 1\times a_{n,1} & 1\times a_{n,2} & ... & 1\times a_{n,n}\\ \end{matrix} \right| \]

\[ 因为det(B)的第一行和第二行成比例 \]

\[ 所以det(B)=0,det(C)=det(A)+det(B)=det(A) \]

\[ 即可以用高斯消元求解行列式 \]