AtCoder Regular Contest 112 C Calculator
洛谷传送门
AtCoder 传送门
很神奇但是经典的构造,学习一下。
注意到题目给的操作很像斐波那契。但是难点是如何将 \(O(\log n)\) 个斐波那契数相加。
考虑一个操作序列 \(4,3,4,3,...\)(共 \(m\) 个)。发现在第 \(i\) 个操作之前给 \(x\) 或 \(y\) 加 \(1\),等价于最后结果加上 \(fib_{m-i}\),是 \(x\) 还是 \(y\) 取决于剩下操作序列的数的奇偶性。
做完了?
code
// Problem: C - Calculator
// Contest: AtCoder - Tokio Marine & Nichido Fire Insurance Programming Contest 2021(AtCoder Regular Contest 122)
// URL: https://atcoder.jp/contests/arc122/tasks/arc122_c
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 200;
ll n, m, f[maxn];
bool vis[maxn];
void solve() {
scanf("%lld", &n);
f[0] = f[1] = 1;
for (m = 2;; ++m) {
f[m] = f[m - 1] + f[m - 2];
if (f[m] > n) {
--m;
break;
}
}
int k = m + 1;
for (int i = m; ~i; --i) {
if (n >= f[i]) {
n -= f[i];
vis[i] = 1;
++k;
}
}
printf("%d\n", k);
for (int i = 0; i <= m; ++i) {
if (vis[m - i]) {
puts(((i ^ m) & 1) ? "2" : "1");
}
puts((i & 1) ? "3" : "4");
}
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}