我在淦鸟

Feyn / 2023-05-03 / 原文

向下的过程中受合力为:

\[mg\sin\theta-mg\cos\theta\mu \]

向上的过程中受合力为:

\[mg\sin\theta+mg\cos\theta\mu \]

令初始距离底部距离为 \(x_0\),那么滑落到底时的速度为:

\[v^2=2ax_0=2x_0(g\sin\theta-g\cos\theta\mu)\\ E_k=\frac{1}{2}mv^2=x_0m(g\sin\theta-g\cos\theta\mu) \]

上滑的距离应该是:

\[x_1=\dfrac{E_k}{F}=\dfrac{x_0m(g\sin\theta-g\cos\theta\mu)}{mg\sin\theta+mg\cos\theta\mu}\\ =\dfrac{\sin\theta-\cos\theta\mu}{\sin\theta+\cos\theta\mu}x_0 \]

记为 \(tx_0\)。那么最后应该是这样的:

\[\text{ans}=x_0\sum\limits_{d=0}^\inf 2t^d=2x_0\dfrac{1}{1-t} \]

代入得到:

\[\text{ans}=2x_0\dfrac{1}{1-\dfrac{\sin\theta-\cos\theta\mu}{\sin\theta+\cos\theta\mu}}= \dfrac{\sin\theta+\cos\theta\mu}{\cos\theta\mu}x_0 \]

而初始速度为 \(v_0\),那么实际上的 \(x_0\) 应该是

\[\dfrac{v_0^2}{2g\sin\theta+g\cos\theta\mu}+x_0 \]

那么实际上的答案应该是:

\[(\dfrac{v_0^2}{2g\sin\theta+2g\cos\theta\mu}+\dfrac{\sin\theta}{\sin\theta+\cos\theta\mu}x_0)\dfrac{\sin\theta+\cos\theta\mu}{\cos\theta\mu} \]

依据答案的形式,提出一个 \(\frac{1}{\mu}\) 之后拆成两项。第一项:

\[\dfrac{v_0^2}{2g\sin\theta+2g\cos\theta\mu}\times\dfrac{\sin\theta+\cos\theta\mu}{\cos\theta}=\dfrac{v_0^2}{2g\cos\theta} \]

第二项:

\[\dfrac{\sin\theta}{\sin\theta+\cos\theta\mu}x_0\times\dfrac{\sin\theta+\cos\theta\mu}{\cos\theta}=\tan\theta x_0 \]

合起来就是:

\[\dfrac{1}{\mu}(\dfrac{v_0^2}{2g\cos\theta}+x_0\tan\theta) \]

选 A 选项。