我在淦鸟
向下的过程中受合力为:
\[mg\sin\theta-mg\cos\theta\mu
\]
向上的过程中受合力为:
\[mg\sin\theta+mg\cos\theta\mu
\]
令初始距离底部距离为 \(x_0\),那么滑落到底时的速度为:
\[v^2=2ax_0=2x_0(g\sin\theta-g\cos\theta\mu)\\
E_k=\frac{1}{2}mv^2=x_0m(g\sin\theta-g\cos\theta\mu)
\]
上滑的距离应该是:
\[x_1=\dfrac{E_k}{F}=\dfrac{x_0m(g\sin\theta-g\cos\theta\mu)}{mg\sin\theta+mg\cos\theta\mu}\\
=\dfrac{\sin\theta-\cos\theta\mu}{\sin\theta+\cos\theta\mu}x_0
\]
记为 \(tx_0\)。那么最后应该是这样的:
\[\text{ans}=x_0\sum\limits_{d=0}^\inf 2t^d=2x_0\dfrac{1}{1-t}
\]
代入得到:
\[\text{ans}=2x_0\dfrac{1}{1-\dfrac{\sin\theta-\cos\theta\mu}{\sin\theta+\cos\theta\mu}}=
\dfrac{\sin\theta+\cos\theta\mu}{\cos\theta\mu}x_0
\]
而初始速度为 \(v_0\),那么实际上的 \(x_0\) 应该是
\[\dfrac{v_0^2}{2g\sin\theta+g\cos\theta\mu}+x_0
\]
那么实际上的答案应该是:
\[(\dfrac{v_0^2}{2g\sin\theta+2g\cos\theta\mu}+\dfrac{\sin\theta}{\sin\theta+\cos\theta\mu}x_0)\dfrac{\sin\theta+\cos\theta\mu}{\cos\theta\mu}
\]
依据答案的形式,提出一个 \(\frac{1}{\mu}\) 之后拆成两项。第一项:
\[\dfrac{v_0^2}{2g\sin\theta+2g\cos\theta\mu}\times\dfrac{\sin\theta+\cos\theta\mu}{\cos\theta}=\dfrac{v_0^2}{2g\cos\theta}
\]
第二项:
\[\dfrac{\sin\theta}{\sin\theta+\cos\theta\mu}x_0\times\dfrac{\sin\theta+\cos\theta\mu}{\cos\theta}=\tan\theta x_0
\]
合起来就是:
\[\dfrac{1}{\mu}(\dfrac{v_0^2}{2g\cos\theta}+x_0\tan\theta)
\]
选 A 选项。