牛客——SQL160 国庆期间每类视频点赞量和转发量
描述
用户-视频互动表tb_user_video_log
id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
---|---|---|---|---|---|---|---|---|
1 | 101 | 2001 | 2021-09-24 10:00:00 | 2021-09-24 10:00:20 | 1 | 1 | 0 | NULL |
2 | 105 | 2002 | 2021-09-25 11:00:00 | 2021-09-25 11:00:30 | 0 | 0 | 1 | NULL |
3 | 102 | 2002 | 2021-09-25 11:00:00 | 2021-09-25 11:00:30 | 1 | 1 | 1 | NULL |
4 | 101 | 2002 | 2021-09-26 11:00:00 | 2021-09-26 11:00:30 | 1 | 0 | 1 | NULL |
5 | 101 | 2002 | 2021-09-27 11:00:00 | 2021-09-27 11:00:30 | 1 | 1 | 0 | NULL |
6 | 102 | 2002 | 2021-09-28 11:00:00 | 2021-09-28 11:00:30 | 1 | 0 | 1 | NULL |
7 | 103 | 2002 | 2021-09-29 11:00:00 | 2021-10-02 11:00:30 | 1 | 0 | 1 | NULL |
8 | 102 | 2002 | 2021-09-30 11:00:00 | 2021-09-30 11:00:30 | 1 | 1 | 1 | NULL |
9 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:20 | 1 | 1 | 0 | NULL |
10 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:15 | 0 | 0 | 1 | NULL |
11 | 103 | 2001 | 2021-10-01 11:00:50 | 2021-10-01 11:01:15 | 1 | 1 | 0 | 1732526 |
12 | 106 | 2002 | 2021-10-02 10:59:05 | 2021-10-02 11:00:05 | 2 | 0 | 1 | NULL |
13 | 107 | 2002 | 2021-10-02 10:59:05 | 2021-10-02 11:00:05 | 1 | 0 | 1 | NULL |
14 | 108 | 2002 | 2021-10-02 10:59:05 | 2021-10-02 11:00:05 | 1 | 1 | 1 | NULL |
15 | 109 | 2002 | 2021-10-03 10:59:05 | 2021-10-03 11:00:05 | 0 | 1 | 0 | NULL |
(uid-用户ID, video_id-视频ID, start_time-开始观看时间, end_time-结束观看时间, if_follow-是否关注, if_like-是否点赞, if_retweet-是否转发, comment_id-评论ID)
短视频信息表tb_video_info
id | video_id | author | tag | duration | release_time |
---|---|---|---|---|---|
1 | 2001 | 901 | 旅游 | 30 | 2020-01-01 07:00:00 |
2 | 2002 | 901 | 旅游 | 60 | 2021-01-01 07:00:00 |
3 | 2003 | 902 | 影视 | 90 | 2020-01-01 07:00:00 |
4 | 2004 | 902 | 美女 | 90 | 2020-01-01 08:00:00 |
(video_id-视频ID, author-创作者ID, tag-类别标签, duration-视频时长, release_time-发布时间)
问题:统计2021年国庆头3天每类视频每天的近一周总点赞量和一周内最大单天转发量,结果按视频类别降序、日期升序排序。假设数据库中数据足够多,至少每个类别下国庆头3天及之前一周的每天都有播放记录。
输出示例:
tag | dt | sum_like_cnt_7d | max_retweet_cnt_7d |
---|---|---|---|
旅游 | 2021-10-01 | 5 | 2 |
旅游 | 2021-10-02 | 5 | 3 |
旅游 | 2021-10-03 | 6 | 3 |
解释:
由表tb_user_video_log里的数据可得只有旅游类视频的播放,2021年9月25到10月3日每天的点赞量和转发量如下:
tag | dt | like_cnt | retweet_cnt |
---|---|---|---|
旅游 | 2021-09-25 | 1 | 2 |
旅游 | 2021-09-26 | 0 | 1 |
旅游 | 2021-09-27 | 1 | 0 |
旅游 | 2021-09-28 | 0 | 1 |
旅游 | 2021-09-29 | 0 | 1 |
旅游 | 2021-09-30 | 1 | 1 |
旅游 | 2021-10-01 | 2 | 1 |
旅游 | 2021-10-02 | 1 | 3 |
旅游 | 2021-10-03 | 1 | 0 |
因此国庆头3天(10.0110.03)里10.01的近7天(9.2510.01)总点赞量为5次,单天最大转发量为2次(9月25那天最大);同理可得10.02和10.03的两个指标。
示例1
输入:
DROP TABLE IF EXISTS tb_user_video_log, tb_video_info;
CREATE TABLE tb_user_video_log (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
uid INT NOT NULL COMMENT '用户ID',
video_id INT NOT NULL COMMENT '视频ID',
start_time datetime COMMENT '开始观看时间',
end_time datetime COMMENT '结束观看时间',
if_follow TINYINT COMMENT '是否关注',
if_like TINYINT COMMENT '是否点赞',
if_retweet TINYINT COMMENT '是否转发',
comment_id INT COMMENT '评论ID'
) CHARACTER SET utf8 COLLATE utf8_bin;
CREATE TABLE tb_video_info (
id INT PRIMARY KEY AUTO_INCREMENT COMMENT '自增ID',
video_id INT UNIQUE NOT NULL COMMENT '视频ID',
author INT NOT NULL COMMENT '创作者ID',
tag VARCHAR(16) NOT NULL COMMENT '类别标签',
duration INT NOT NULL COMMENT '视频时长(秒数)',
release_time datetime NOT NULL COMMENT '发布时间'
)CHARACTER SET utf8 COLLATE utf8_bin;
INSERT INTO tb_user_video_log(uid, video_id, start_time, end_time, if_follow, if_like, if_retweet, comment_id) VALUES
(101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:20', 1, 1, 0, null)
,(105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 0, 0, 1, null)
,(102, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 1, 1, null)
,(101, 2002, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 1, null)
,(101, 2002, '2021-09-27 11:00:00', '2021-09-27 11:00:30', 1, 1, 0, null)
,(102, 2002, '2021-09-28 11:00:00', '2021-09-28 11:00:30', 1, 0, 1, null)
,(103, 2002, '2021-09-29 11:00:00', '2021-09-29 11:00:30', 1, 0, 1, null)
,(102, 2002, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 1, null)
,(101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 0, null)
,(102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null)
,(103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526)
,(106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 2, 0, 1, null)
,(107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 0, 1, null)
,(108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null)
,(109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:05', 0, 1, 0, null);
INSERT INTO tb_video_info(video_id, author, tag, duration, release_time) VALUES
(2001, 901, '旅游', 30, '2020-01-01 7:00:00')
,(2002, 901, '旅游', 60, '2021-01-01 7:00:00')
,(2003, 902, '影视', 90, '2020-01-01 7:00:00')
,(2004, 902, '美女', 90, '2020-01-01 8:00:00');
输出:
旅游|2021-10-01|5|2
旅游|2021-10-02|5|3
旅游|2021-10-03|6|3
我的解题思路:
- 筛选出对应日期的数据,2021年国庆节头3天(2021-10-012021-10-03),每天近一周,也就是10-01加前6天=[09-2510-04)
- 关联表,找出视频类别
- 对每类视频每天的总点赞数和总转发量求和
- 窗口函数,分别求近一周的总点赞数和最大转发量;窗口函数设置步长为7(6+当前行)
- 筛选出对应日期的数据
select tag,
dt,
sum_like_cnt_7d,
max_retweet_cnt_7d
from (
select tag,
dt,
sum(if_like)
over (partition by tag order by dt rows between 6 preceding and current row ) as sum_like_cnt_7d,
max(if_retweet)
over (partition by tag order by dt rows between 6 preceding and current row ) as max_retweet_cnt_7d
from (
select tag,
dt,
sum(if_like) as if_like,
sum(if_retweet) as if_retweet
from (select t2.tag as tag,
date_format(t1.start_time, '%Y-%m-%d') as dt,
t1.if_like as if_like,
t1.if_retweet as if_retweet
from tb_user_video_log t1
left join tb_video_info t2 on t1.video_id = t2.video_id
where t1.start_time < '2021-10-04'
and t1.start_time >= date_sub('2021-10-04', interval 9 day)
) t
group by tag,
dt) tt
order by tag desc, dt asc) t3
where dt < '2021-10-04'
and dt >= date_sub('2021-10-04', interval 3 day)
;
更加优秀的解题思路:
核心还是用窗口函数
优化了子查询语句,第一道子查询可以和第二道合并
优化了窗口函数的写法
SELECT *
FROM (
SELECT tag,
dt,
SUM(like_cnt) OVER w sum_like_cnt_7d,
MAX(retweet_cnt) OVER w sum_retweet_cnt_7d
FROM (
SELECT tag,
DATE(start_time) dt,
SUM(if_like) like_cnt,
SUM(if_retweet) retweet_cnt
FROM tb_video_info
LEFT JOIN tb_user_video_log USING (video_id)
WHERE DATE(start_time) BETWEEN '2021-09-25' AND '2021-10-03'
group by 1, 2) t1
WINDOW w AS (PARTITION BY tag ORDER BY dt DESC ROWS BETWEEN CURRENT ROW AND 6 FOLLOWING)
) t2
GROUP BY 1, 2
HAVING dt BETWEEN '2021-10-01' AND '2021-10-03'
ORDER BY 1 DESC, 2