【学习笔记】简单数论-质数

HZOI - Isaac / 2023-08-18 / 原文

前置知识

  • 质数的个数是无限的。
  • 试除法:若一个正整数 \(N\) 为合数,则存在一个能整除 \(N\) 的数 \(T\) ,其中 \(2 \le T \le \sqrt{N}\)
    • 时间复杂度为 \(O(\sqrt{N})\)
    • 代码实现
    bool isprime(int n)
    {
    	if (n < 2)
    		return false;
    	for (int i = 2; i <= sqrt(n); i++)
    		if (n % i == 0)
    			return false;
    	return true;
    }
    

筛法

  • Eratosthenes 筛法(埃式筛法)
    • 时间复杂度 \(O(N \times \log \log N)\)
    • luogu P3912 素数个数
    #include<bits/stdc++.h>
    using namespace std;
    bool m[100000010];
    int main()
    {
        int n,i,j,ans=0;
        cin>>n;
        m[1]=1;
        for(i=2;i<=sqrt(n);i++)
        {
            if(m[i]==0)
            {
                for(j=2;i*j<=n;j++)
                {
                    m[i*j]=1;
                }
    
            }
        }
        for(i=2;i<=n;i++)
        {
            if(m[i]==0)
            {
                ans++;
            }
        }
        cout<<ans;
        return 0;
    }
    
  • 线性筛法(欧拉筛法)
    • 时间复杂度 \(O(N)\)
    • luogu P3383 【模板】线性筛素数
    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define sort stable_sort
    #define endl '\n'
    int prime[100000001],sum[10],len=0;
    bool vis[100000001];
    void isprime(int n)
    {
        int i,j;
        memset(vis,false,sizeof(vis));
        for(i=2;i<=n;i++)
        {
            if(vis[i]==false)
            {
                len++;
                prime[len]=i;
            }
            for(j=1;j<=len&&i*prime[j]<=n;j++)
            {
                vis[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    break;
                }
            }
        }
    }
    int main()
    {
        int n,q,i,k;
        cin>>n>>q;
        isprime(n);
        for(i=1;i<=q;i++)
        {
            cin>>k;
            cout<<prime[k]<<endl;
        }
        return 0;
    }
    

算术基本定理(唯一分解定理)

  • 任何一个大于 \(1\) 的正整数都能唯一分解成有限个的质数的乘积,可写作 \(N=p_1^{c_1}p_2^{c_2}……p_m^{c_m}\) ,其中 \(c_i\) 都是正整数, \(p_i\) 都是质数,且满足 \(p_1<p_2<……<p_m\)

互质

  • \(\forall a,b \in \mathbb{N},\gcd(a,b)=1\) ,则称 \(a,b\) 同余。
  • 对于三个数或更多个数的情况,将 \(\gcd(a,b,c)=1\) 的情况称为 \(a,b,c\) 互质;将 \(\gcd(a,b)=\gcd(a,c)=\gcd(b,c)=1\) 的情况称为 \(a,b,c\) 两两互质。

欧拉函数

  • \(1 \sim N\) 中与 \(N\) 互质的数的个数被称为欧拉函数,记作 \(\varphi(N)\)

  • 依据算术基本定理,有 \(N=p_1^{c_1}p_2^{c_2}……p_m^{c_m}\) ,则 \(\varphi(N)=N \times \dfrac{p_1-1}{p_1} \times \dfrac{p_2-1}{p_2} \times ... \times \dfrac{p_m-1}{p_m}=N \times \prod\limits_{i=1}^{m}{(1- \dfrac{1}{p_i})}\) ,其中 \(c_i\) 都是正整数, \(p_i\) 都是质数,且满足 \(p_1<p_2<……<p_m\)

    • 证明:设 \(p,q(p \ne q)\)\(N\) 的质因子, \(1 \sim N\)\(p\) 的倍数共有 \(\left\lfloor\dfrac{N}{p}\right\rfloor\) 个, \(q\) 的倍数共有 \(\left\lfloor\dfrac{N}{q}\right\rfloor\) 个,依据容斥原理, \(1 \sim N\) 中不与 \(N\) 含有共同质因子 \(p\)\(q\) 的个数为 \(N -\left\lfloor\dfrac{N}{p}\right\rfloor-\left\lfloor\dfrac{N}{q}\right\rfloor+\left\lfloor\dfrac{N}{p \times q}\right\rfloor=\left\lfloor N \times (1- \dfrac{1}{p}- \dfrac{1}{q}+ \dfrac{1}{p \times q})\right\rfloor=\left\lfloor N \times (1- \dfrac{1}{p}) \times (1- \dfrac{1}{q})\right\rfloor\) 。类似地,可在 \(N\) 的全部质因子上使用容斥原理,即可得到与 \(N\) 互质的数的个数。
  • 性质

    • \(\varphi(1)=1\)
    • \(p\) 为质数,则 \(\varphi(p)=p-1,\varphi(p^k)=p^k-p^{k-1}=(p-1) \times p^{k-1}\)
      • 证明:设 \(n=p^k\) ,比 \(n\) 小的正整数有 \(p^k-1\) 个。其中共有 \(p^{k-1}-1\) 个数能被 \(p\) 整除,即这些数不与 \(p^k\) 互质。故 \(\varphi(p^k)=p^k-1-(p^{k-1}-1)=p^k-p^{k-1}=(p-1) \times p^{k-1}\)
    • 对于两个不同的质数 \(p,q\) ,有 \(n=p\times q\) ,则 \(\varphi(n)=(p-1)(q-1)\)
    • \(\forall n>1\) ,则 \(1 \sim n\) 中与 \(n\) 互质的数的和为 \(\dfrac{n \times \varphi(n)}{2}\)
      • 证明:依据更相减损法,有 \(\gcd(n,x)=\gcd(n,n-x)\) ,即与 \(n\) 互质的数 \(x,n-x\) 成对出现,平均值为 \(\dfrac{n}{2}\)
    • \(n\) 为奇数,则 \(\varphi(2n)=\varphi(2) \times \varphi(n)=\varphi(n)\)
    • \(2<n\) ,则 \(2|\varphi(n)\)
    • \(a,b\) 互质,则 \(\varphi(ab)=\varphi(a) \times \varphi(b)\)
      • 证明:依据算术基本定理,设 \(a=\prod\limits_{i=1}^n p_i^{c_i},b=\prod\limits_{i=1}^m q_i^{c'_i}\) ,又因为 \(a,b\) 互质,所以不存在一组 \(i,j\) 满足 \(p_i=q_j\) ,故 \(\varphi(ab)=ab \times \prod\limits_{i=1}^n (1-\dfrac{1}{p_i}) \times \prod\limits_{i=1}^m (1-\dfrac{1}{q_i})\) ,又有 \(\varphi(a)=a \times \prod\limits_{i=1}^n (1-\dfrac{1}{p_i}),\varphi(b)=b \times \prod\limits_{i=1}^m (1-\dfrac{1}{1_i})\) ,故 \(\varphi(ab)=\varphi(a) \times \varphi(b)\)
        • 由本条性质可知 \(\varphi\) 是积性函数。
    • \(a|b\) ,则 \(\varphi(ab)=a \times \varphi(b)\)
      • 证明:因为 \(ab\)\(b\) 所有的质因子是相同的,只是部分质因子的指数发生变化,故 \(\varphi(ab)=a \times \varphi(b)\)
    • \(a|b\) ,则 \(\varphi(a) | \varphi(b)\)
    • \(p\) 为质数,且 \(p|n,p^2|n\) ,则 \(\varphi(n)=\varphi(\dfrac{n}{p}) \times p\)
      • 证明:因为 \(p|n,p^2|n\) ,所以 \(n,\dfrac{n}{p}\) 有相同的质因子(其中 \(p\) 的指数不同),依据欧拉函数的计算公式,此时有 \(\dfrac{\varphi(n)}{\varphi(\dfrac{n}{p})}=p\) ,故 \(\varphi(n)=\varphi(\dfrac{n}{p}) \times p\)
    • \(p\) 为质数,且 \(p|n,p^2 \nmid n\) ,则 \(\varphi(n)=\varphi(\dfrac{n}{p}) \times (p-1)\)
      • 证明:因为 \(p|n,p^2|n\) ,所以 \(n,\dfrac{n}{p}\) 互质,又因为 \(\varphi\) 是积性函数,故 \(\varphi(n)=\varphi(\dfrac{n}{p}) \times \varphi(p)=\varphi(\dfrac{n}{p}) \times (p-1)\)
    • \(n=\sum\limits_{d|n}^{}\varphi(d)\)
      • 证明:设 \(k\) 满足 \(k<n,\gcd(k,n)=d\) ,则 \(\gcd(\dfrac{k}{d},\dfrac{n}{d})=1\) ;设 \(f(x)\) 表示满足 \(\gcd(k,n)=x\)\(k\) 的个数,则 \(n=\sum\limits_{i=1}^n f(i)\) 。又因为 \(\dfrac{k}{x}\)\(\dfrac{n}{x}\) 互质,有 \(f(x)=\varphi(\dfrac{n}{x})\) ,则 \(n=\sum\limits_{i|n}^{}\varphi(\dfrac{n}{i})\) 。易知 \(i\)\(\dfrac{n}{i}\) 是一一对应的,故 \(n=\sum\limits_{d|n}^{}\varphi(d)\)
    • 依据算术基本定理,有 \(n=\prod\limits_{i=1}^m p_i^{c_i}\) ,又因为 \(\varphi\) 是积性函数,则 \(\varphi(n)=\prod\limits_{i=1}^m \varphi(p_i^{c_i})=\prod\limits_{i=1}^m (p_i-1) \times p_i^{{c_i}-1}=\prod\limits_{i=1}^m (1-\dfrac{1}{p_i}) \times p_i^{c_i}=n \times \prod\limits_{i=1}^m (1-\dfrac{1}{p_i})=n \times \prod\limits_{i=1}^m \dfrac{p_i-1}{p_i}\)
      • PS:无意义(用计算式证定义,又用定义证计算式)。
    • \(n\) 为正整数,则 \(\sum\limits_{i=1}^{n} \gcd(i,n)=\sum\limits_{d|n}^{} d \times \varphi({\dfrac{n}{d}})\)
      • luogu P2303 [SDOI2012] Longge 的问题

      • 证明:

        \(\begin{aligned}\sum\limits_{i=1}^{n} \gcd(i,n) \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d|n}^{} d \times \sum\limits_{i=1}^{n} [\gcd(i,n)=d] \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d|n}^{} d \times \sum\limits_{i=1}^{\dfrac{n}{d}} [\gcd(i,\dfrac{n}{d})=1] \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d|n}^{} d \times \varphi({\dfrac{n}{d}})\end{aligned}\)

    • \(n\) 为正整数,则 \(\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \gcd(i,j)=\sum\limits_{d=1}^{n} \varphi(d) \times \left\lfloor\dfrac{n}{d}\right\rfloor^2\)
      • luogu P2398 GCD SUM

      • 证明:

        \(\begin{aligned}\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \gcd(i,j) \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{d| \gcd(i,j)}^{} \varphi(d) \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{d|i,d|j}^{} \varphi(d) \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d=1}^{n} \varphi(d) \sum\limits_{i=1}^{n} [d|i] \sum\limits_{j=1}^{n} [d|j] \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d=1}^{n} \varphi(d) \left\lfloor\dfrac{n}{d}\right\rfloor \left\lfloor\dfrac{n}{d}\right\rfloor \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d=1}^{n} \varphi(d) \times \left\lfloor\dfrac{n}{d}\right\rfloor^2 \end{aligned}\)

      • 拓展:若 \(n,m\) 为正整数,则 \(\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} \gcd(i,j)=\sum\limits_{d=1}^{\min(n,m)} \varphi(d) \times \left\lfloor\dfrac{n}{d}\right\rfloor \times \left\lfloor\dfrac{m}{d}\right\rfloor\)

        • 证明:

          \(\begin{aligned}\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} \gcd(i,j) \end{aligned}\)

          \(\begin{aligned}&=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} \sum\limits_{d| \gcd(i,j)}^{} \varphi(d) \end{aligned}\)

          \(\begin{aligned}&=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{m} \sum\limits_{d|i,d|j}^{} \varphi(d) \end{aligned}\)

          \(\begin{aligned}&=\sum\limits_{d=1}^{\min(n,m)} \varphi(d) \sum\limits_{i=1}^{n} [d|i] \sum\limits_{j=1}^{m} [d|j] \end{aligned}\)

          \(\begin{aligned}&=\sum\limits_{d=1}^{\min(n,m)} \varphi(d) \left\lfloor\dfrac{n}{d}\right\rfloor \left\lfloor\dfrac{n}{d}\right\rfloor \end{aligned}\)

          \(\begin{aligned}&=\sum\limits_{d=1}^{\min(n,m)} \varphi(d) \times \left\lfloor\dfrac{n}{d}\right\rfloor \times \left\lfloor\dfrac{m}{d}\right\rfloor\end{aligned}\)

    • \(n\) 为正整数,则 \(\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \gcd(i,j)= \sum\limits_{d=1}^{n}d \times \;(\;2 \times \;(\;\sum\limits_{i=1}^{\dfrac{n}{d}}\varphi(i)\;)\;-1)\)
      • luogu P2398 GCD SUM

      • 证明:

        \(\begin{aligned}\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \gcd(i,j) \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{d=1}^{n}d \times [\gcd(i,j)=d] \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{d=1}^{n}d \times [\gcd(\dfrac{i}{d},\dfrac{j}{d})=1] \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d=1}^{n}d \times \sum\limits_{i=1}^{\dfrac{n}{d}} \sum\limits_{j=1}^{\dfrac{n}{d}} [\gcd(i,j)=1] \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d=1}^{n}d \times \;(\sum\limits_{i=1}^{\dfrac{n}{d}} \times \;(2\;(\sum\limits_{j=1}^{i} [\gcd(i,j)=1])\;)\;-1) \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d=1}^{n}d \times \;(\;(\;\sum\limits_{i=1}^{\dfrac{n}{d}} \times 2\varphi(i)\;)\;-1) \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d=1}^{n}d \times \;(\;2 \times \;(\;\sum\limits_{i=1}^{\dfrac{n}{d}}\varphi(i)\;)\;-1) \end{aligned}\)

      • 拓展:若 \(n,m\) 为正整数,则有link(太长就放这里了)。

    • \(n\) 为正整数,则 \(\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} [\gcd(i,j) \in \mathbb{P}]= \sum\limits_{d \in \mathbb{P}}^{n}\;(\;2 \times \;(\;\sum\limits_{i=1}^{\dfrac{n}{d}}\varphi(i)\;)\;-1)\) ;其中 \(\mathbb{P}\) 表示素数集, \(\mathbb{P}=\{2,3,5,7,11,13,17,19,23,29,...\}\)
      • luogu P2568 GCD

      • 证明:

        \(\begin{aligned}\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} [\gcd(i,j) \in \mathbb{P}] \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{d\in \mathbb{P}}^{n}[\gcd(i,j)=d] \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \sum\limits_{d\in \mathbb{P}}^{n} [\gcd(\dfrac{i}{d},\dfrac{j}{d})=1] \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d\in \mathbb{P}}^{n} \sum\limits_{i=1}^{\dfrac{n}{d}} \sum\limits_{j=1}^{\dfrac{n}{d}} [\gcd(i,j)=1] \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d\in \mathbb{P}}^{n} \;(\sum\limits_{i=1}^{\dfrac{n}{d}} \times \;(2\;(\sum\limits_{j=1}^{i} [\gcd(i,j)=1])\;)\;-1) \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d \in \mathbb{P}}^{n} \;(\;(\;\sum\limits_{i=1}^{\dfrac{n}{d}} \times 2 \times \varphi(i)\;)\;-1) \end{aligned}\)

        \(\begin{aligned}&=\sum\limits_{d \in \mathbb{P}}^{n}\;(\;2 \times \;(\;\sum\limits_{i=1}^{\dfrac{n}{d}}\varphi(i)\;)\;-1) \end{aligned}\)

  • 例题

    • SP4141 ETF - Euler Totient Function | UVA10179 Irreducable Basic Fractions | UVA10299 Relatives
      • 对原数进行分解质因数,顺便求出欧拉函数。
        int phi(int n)
        {
        	int ans=n,i;
        	for(i=2;i<=sqrt(n);i++)
        	{
        		if(n%i==0)
        		{
        			ans=ans/i*(i-1);
        			while(n%i==0)
        			{
        				n/=i;
        			}
        		}
        	}
        	if(n>1)
        	{
        		ans=ans/n*(n-1);
        	}
        	return ans;
        }
        
    • UVA11327 Enumerating Rational Numbers
      • 线性筛欧拉函数(时间复杂度为 \(O(N)\) )板子
        void euler(ll n)
        {
        	memset(vis,false,sizeof(vis));
        	phi[1]=1;
        	for(ll i=2;i<=n;i++)
        	{
        		if(vis[i]==false)
        		{
        			len++;
        			prime[len]=i;
        			phi[i]=i-1;//phi[i]表示i的欧拉函数
        		}
        		for(ll j=1;j<=len&&i*prime[j]<=n;j++)
        		{
        			vis[i*prime[j]]=true;
        			if(i%prime[j]==0)
        			{
        				phi[i*prime[j]]=phi[i]*prime[j];
        				break;
        			}
        			else
        			{
        				phi[i*prime[j]]=phi[i]*(prime[j]-1);
        			}
        		}
        	}
        }
        
  • 积性函数

    • \(a,b\) 互质,有 \(f(ab)=f(a) \times f(b)\) ,那么称函数 \(f\) 为积性函数。
    • 性质
      • 若函数 \(f\) 是积性函数,依据算术基本定理,有 \(n=\prod\limits_{i=1}^m p_i^{c_i}\) ,则 \(f(n)=\prod\limits_{i=1}^m f(p_i^{c_i})\)