波动方程-初值问题-达朗贝尔公式的推导
1. 波动方程-初值问题-达朗贝尔公式的推导
1.1. 问题
\[\begin{cases}
加速度:u_{tt} = a^{2}u_{xx},x\in R,t>0 \\
初位移:u|_{t = 0} = \varphi(x) \\
初速度:u_{t}|_{t = 0} = \psi(x)
\end{cases}\tag{1}
\]
1.2. 结论
\[u = \frac{1}{2}[\varphi(x-at)+\varphi(x+at)]+\frac{1}{2a}\int_{x-at}^{x+at}\psi(🔺)d🔺+\frac{1}{2a}\int_{0}^{t}\int_{x-a(t-😀)}^{x+a(t-😀)}f(☆,😀)d☆d😀
\]
1.3. 理论推导
作方程类型判断(视t为y):
\[\Delta = b^{2}-4AC=0-4\times{a^{2}}\times{(-1)}=4a^{2}>0,为双曲型
\]
由特征方程:
\[dx^{2}-a^{2}dt^{2}=0\tag{2}
\]
知:
\[(\frac{dx}{dt})_1= a,(\frac{dx}{dt})_{2}=-a\tag{3}
\]
对(3)积分,有:
\[\begin{cases} x-at = C_1 \\
x+at=C_2 \\
\end{cases}\tag{4}
\]
对(1)作变量代换:
\[\begin{cases}
🔺= x-at \\
⚪= x+at
\end{cases}\tag{5}
\]
则有:
\[u_{🔺,⚪} = 0\tag{6}
\]
对 (6)积分则有:
\[u =f(🔺)+g(⚪)\tag{7}
\]
将u代入初始条件,有:
\[\begin{cases}
初位移条件的结论:f(x)+g(x) =\varphi(x) \\
初速度条件的结论:a[-f'(x)+g'(x)] = \psi(x)
\end{cases}\tag{8}
\]
对上式初速度条件得到的方程两边积分,有:
\[初速度条件的结论的推论:-f(x)+g(x) = \frac{-1}{2a} \int_{x_0}^{x_1}\psi(\lambda)d\lambda+\frac{C}{2}\tag{9}
\]
于是得到:
\[\begin{cases}
初位移条件的结论:f(x)+g(x) =\varphi(x) \\ \\
初速度条件的结论的推论:-f(x)+g(x) = -\frac{1}{2a} \int_{x_0}^{x_1}\psi(\lambda)d\lambda+\frac{C}{2}
\end{cases}\tag{10}
\]
联立求解上式得到:
\[\begin{cases}
f(★) = \frac{1}{2}\varphi(★) -\frac{1}{2a} \int_{0}^{★}\psi(😊)d😊-\frac{C}{2} \\
g(★) = \frac{1}{2}\varphi(★) +\frac{1}{2a} \int_{0}^{★}\psi(😊)d😊+\frac{C}{2}
\end{cases}\tag{11}
\]
\[\begin{cases}
u(x,t) =f(🔺)+g(⚪)\\
🔺= x-at \\
⚪= x+at
\end{cases}\tag{12}
\]
\[\begin{cases}
f(★) = \frac{1}{2}\varphi(★) -\frac{1}{2a} \int_{0}^{★}\psi(😊)d😊-\frac{C}{2} \\
g(★) = \frac{1}{2}\varphi(★) +\frac{1}{2a} \int_{0}^{★}\psi(😊)d😊+\frac{C}{2}
\end{cases}\tag{13}
\]
于是:
\[u(x,t) =\frac{1}{2}[\varphi(x-at)+\varphi(x+at)]+\frac{1}{2a} \int_{x-at}^{x+at}\psi(😊)d😊\tag{14}
\]