Flink(二)搭建Maven工程实现WordCount

shihongpin / 2024-09-27 / 原文

开发环境编写WordCount

pom文件

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.hongpin.bigdata.Flink</groupId>
    <artifactId>Flink</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.10.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>1.10.1</version>
        </dependency>
    </dependencies>
</project>

批处理WordCount

package com.hongpin.bigdata;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;

import java.awt.*;
import java.nio.file.Path;

// 批处理
public class WordCount {
    public static void main(String[] args) throws Exception {
        if (args.length != 2) {
            System.err.println("Usage: WordCount <input path> <output path>");
            System.out.println(args.length);
            return;
        }
        //创建执行环境
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        //从文件中读取数据
        String inputPath = args[0];
        DataSet<String> inputDataSet = env.readTextFile(inputPath);

        // 空格分词打散之后,对单词进行 groupby 分组,然后用 sum 进行聚合
        DataSet<Tuple2<String, Integer>> wordCountDataSet =
                inputDataSet.flatMap(new MyFlatMapper())
                        .groupBy(0)
                        .sum(1);
        // 打印输出
        String outputPath = args[1];
        wordCountDataSet.writeAsText(outputPath);
    }
    public static class MyFlatMapper implements FlatMapFunction<String, Tuple2<String,
            Integer>> {
        @Override
        public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws
                Exception {
            String[] words = value.split(" ");
            for (String word : words) {
                out.collect(new Tuple2<String, Integer>(word, 1));
            }
        }
    }
}

流处理WordCount

package com.hongpin.bigdata;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class StreamWordCount {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env =
                StreamExecutionEnvironment.getExecutionEnvironment();
        ParameterTool parameterTool = ParameterTool.fromArgs(args);
        String host = parameterTool.get("host");
        int port = parameterTool.getInt("port");
        DataStream<String> inputDataStream = env.socketTextStream(host, port);
        DataStream<Tuple2<String, Integer>> wordCountDataStream = inputDataStream
                .flatMap(new WordCount.MyFlatMapper())
                .keyBy(0)
                .sum(1);
        wordCountDataStream.print().setParallelism(1);
        env.execute();
    }

}
  • 其中host为运行有监听在指定端口上的TCP服务器的主机名或IP地址,port为监听的端口

遇到的问题

  • 目前批处理文件在虚拟机上提交执行,没有看到输出文件,但在IDEA环境中可以正常测试