No_53_MaximumSubarray
Content
Given an integer array nums
, find the subarray with the largest sum, and return its sum.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4] Output: 6 Explanation: The subarray [4,-1,2,1] has the largest sum 6.
Example 2:
Input: nums = [1] Output: 1 Explanation: The subarray [1] has the largest sum 1.
Example 3:
Input: nums = [5,4,-1,7,8] Output: 23 Explanation: The subarray [5,4,-1,7,8] has the largest sum 23.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
Follow up: If you have figured out the O(n)
solution, try coding another solution using the divide and conquer approach, which is more subtle.
Related Topics
Solution
1. 动态规划
Java
class Solution {
public int maxSubArray(int[] nums) {
// 1 <= nums.length <= 10⁵
// -10⁴ <= nums[i] <= 10⁴
int n = nums.length;
// dp[i]表示以下标i结尾的求和最大的子数组的求和的值
int[] dp = new int[n];
dp[0] = nums[0];
int max = dp[0];
for (int i = 1; i < n; i++) {
if (dp[i - 1] > 0) {
dp[i] = dp[i - 1] + nums[i];
} else {
dp[i] = nums[i];
}
max = Math.max(max, dp[i]);
}
return max;
}
}
2. 分治法
Java
class Solution {
public int maxSubArray(int[] nums) {
// 1 <= nums.length <= 10⁵
// -10⁴ <= nums[i] <= 10⁴
Status status = get(nums, 0, nums.length - 1);
return status.mSum;
}
public Status get(int[] nums, int l, int r) {
if (l > r) {
return new Status(0, 0, 0, 0);
} else if (l == r) {
return new Status(nums[l], nums[l], nums[l], nums[l]);
} else {
int mid = l + r >> 1;
Status lStatus = get(nums, l, mid);
Status rStatus = get(nums, mid + 1, r);
int lSum = Math.max(lStatus.lSum, lStatus.iSum + rStatus.lSum);
int rSum = Math.max(rStatus.rSum, rStatus.iSum + lStatus.rSum);
int mSum = Math.max(
// 不跨区比较
Math.max(lStatus.mSum, rStatus.mSum),
// 跨区比较
Math.max(
Math.max(lSum, rSum),
lStatus.rSum + rStatus.lSum
)
);
int iSum = lStatus.iSum + rStatus.iSum;
return new Status(lSum, rSum, mSum, iSum);
}
}
/**
* [l,r]区间状态
*/
class Status {
// 表示 [l,r] 内以 l 为左端点的最大子段和
private final int lSum;
// 表示 [l,r] 内以 r 为右端点的最大子段和
private final int rSum;
// 表示 [l,r] 内的最大子段和
private final int mSum;
// 表示 [l,r] 的区间和
private final int iSum;
public Status(int lSum, int rSum, int mSum, int iSum) {
this.lSum = lSum;
this.rSum = rSum;
this.mSum = mSum;
this.iSum = iSum;
}
}
}